Introducing diversity among the models of multi-label classification ensemble
نویسندگان
چکیده
A number of ensemble algorithms for solving multi-label classification problems have been proposed in recent years. Diversity among the base learners is known to be important for constructing a good ensemble. In this paper we define a method for introducing diversity among the base learners of one of the previously presented multi-label ensemble classifiers. An empirical comparison on 10 datasets demonstrates that model diversity leads to an improvement in prediction accuracy in 80% of the evaluated cases. Additionally, in most cases the proposed "diverse" ensemble method outperforms other multi-label ensembles as well.
منابع مشابه
MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملOptimum Ensemble Classification for Fully Polarimetric SAR Data Using Global-Local Classification Approach
In this paper, a proposed ensemble classification for fully polarimetric synthetic aperture radar (PolSAR) data using a global-local classification approach is presented. In the first step, to perform the global classification, the training feature space is divided into a specified number of clusters. In the next step to carry out the local classification over each of these clusters, which cont...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملMulti-label Ensemble Learning
Multi-label learning aims at predicting potentially multiple labels for a given instance. Conventional multi-label learning approaches focus on exploiting the label correlations to improve the accuracy of the learner by building an individual multi-label learner or a combined learner based upon a group of single-label learners. However, the generalization ability of such individual learner can ...
متن کامل